Magnetic Field Sensing with 4H SiC Diodes: Nitrogen vs Phosphorous Implantation

<u>Corey J. Cochrane</u>^{1,a*}, Hannes Kraus^{1,b}, Philip G. Neudeck^{2,c}, David Spry^{2,d}, Ryan J. Waskiewicz^{3,e}, James Ashton^{3,f} Patrick M. Lenahan^{3,g}

¹Jet Propulsion Laboratory/Caltech, Pasadena, CA 91109, USA ²NASA Glenn Research Center, Cleveland, OH 44135, USA ³The Pennsylvania State University, University Park, PA 16802, USA

This Work

- Overview of the initial stages of development for a new 4H-SiC solid-state based magnetometer intended for vectorized planetary magnetic field sensing.
 - Leverage a MOSFET as the magnetic field sensing device
 - Demonstrated sensitivity of $400 \ nT/\sqrt{Hz}$ with
- This study will investigate the magnetic field sensing capability of two nearly identical devices
 - 4H-SiC n⁺p diodes fabricated by NASA Glenn Research Center
 - Differ only in implantation species (Nitrogen vs Phosphorous) and annealing time
 - These devices were NOT designed for magnetometry!
- Will also investigate the effect of high energy electron radiation
 - Observed a negative built-in-voltage shift in both diodes
 - No effect on maximum sensitivity!

NASA's Interest in Magnetometers

Magnetic fields in space

Heliophysics

Earth & Planetary Science

Magnetometers aid in the search for life

Europa/Jupiter

Enceladus/Saturn

Improved Magnetic Field Models

Europa / Jupiter

Simulation:
JPL's Jupiter Environment Tool
(JET) plugin for STK
Corey Cochrane, Erick Sturm

Motivation for New Technology

2. Extreme **Environments**

fluxgate

3. Still much science to be obtained!

http://nssdc.gsfc.nasa.gov/planetary/factsheet/

SiC Magnetometer (SiCMag)

Sensor:

- Simple n⁺p 4H-SiC diode
- Spin dependent recombination (SDR) due to deep level defects
- Leverage the zero-field detection of SDR (hyperfine mixing)
- Robust: high temperature and high radiation environments

Instrument:

- Field nulling design
- Inexpensive, simple, small footprint, low power
- No high frequency RF or optical components
- No dead zones
- Simultaneous measurement of 3 axes using a single sensor
- Potential to self-calibrate

$$\mathcal{H} = g_e \mu_B \mathbf{B} \cdot (\mathbf{S}_1 + \mathbf{S}_2) + \sum_{i}^{2} \sum_{j}^{N} \mathbf{S}_i \cdot \mathbf{A}_{i,j} \cdot \mathbf{I}_j + \mathbf{S}_1 \cdot \mathbf{J} \cdot \mathbf{S}_2 + \mathbf{S}_1 \cdot \mathbf{D} \cdot \mathbf{S}_2$$

ICSCRM - September 20th, 2017 – Washington, DC – Corey J. Cochrane

Magnetometer Instrument

FDM Signal Processing

Cochrane, C. J. et al. Vectorized magnetometer for space applications using electrical readout of atomic scale defects in silicon carbide. Sci. Rep. 6, 37077, (2016).

$$\frac{\delta B}{\sqrt{\Delta f}} = 400 \frac{nT}{\sqrt{Hz}}$$

3-axis Helmholtz coil for magnetic field modulation and nulling

4H SiC MOSFET

Nitrogen vs Phosphorous Implantation

- We evaluate the magnetic field sensing capability of two sets of nearly identical n+p diodes fabricated at NASA Glenn.
- The 250 µm diameter diodes were formed by the same high-dose n-type implantations used to make source/drain regions for two different JFET IC wafer runs, contacted by a 162 µm diameter IrIS metal stack [12-14].
- The major difference between the two sets of diodes is that one received a nitrogen (N) implant with a 4 hour activation annealing time while the other a phosphorus (P) implant with a ~100 hour activation annealing time

n-type N doped, p-type Al doped

N-implant

P-implant

D. J. Spry, et al., Mat. Sci. For. 828 908-912 (2016), D. J. Spry, et al., IEEE Elec. Dev. Lett. 38 1082-1085 (2017)., D. J. Spry, D. Lukco, J. Electron. Mater. 41 915-920 (2012).

Low-Field EDMR Results

ICSCRM - September 20th, 2017 – Washington, DC – Corey J. Cochrane

High-Field EDMR Results

- High field measurements made at Penn State University
- Indicate that the dominate defect likely a silicon vacancy, isotropic g ~ 2.0029 +/- 0.0003
- Hyperfine interactions are anisotropic and likely due to a different defect in large quantities as they
 appear to shift with respect to the center dominating line.

Effect of Radiation on Defect Spectrum

JPL's Dynamitron: electron irradiation, fluence of $1x10^{14}$ e⁻ / cm², E = 2 MeV, both contacts of the diodes tied to a common ground.

ICSCRM - September 20th, 2017 – Washington, DC – Corey J. Cochrane

Effect of Electron Irradiation on Sensitivity

- Electrons effected the built-in voltage of the diodes
- Maximum sensitivity remains unaffected for both devices

$$\frac{\delta B}{\sqrt{\Delta f}} = 2\sigma\sqrt{\pi q} \frac{\sqrt{I_0}}{\Delta I} \left(\frac{T}{\sqrt{Hz}}\right)$$

DC current I_0 Change in current ΔI signal width σ

Applications and Future Work

- Applications
 - planetary entry probes
 - Landers
 - missions in extreme environments
 - swarms of spacecraft significantly smaller than current nanosats
- Future Work: Planetary Instrument Concepts for Advancement of Solar System Observations (PICASSO)
 - Model the observed response
 - Trade geometry, size, doping, and processing of sensor for optimal field detection
 - Fabricate customized sensor with NASA Glenn Research Center

Questions???

Acknowledgement

The research described here was carried out at JPL, CalTech, under a contract with NASA, supported by PICASSO. Device fabrication at NASA Glenn Research Center was supported by both PICASSO and the NASA Aeronautics Transformative Technologies and Tools project.

